Chrome Extension
WeChat Mini Program
Use on ChatGLM

Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling

GEOLOGY(2020)

Cited 15|Views21
No score
Abstract
The gravel-sand transition (GST) is commonly observed along rivers. It is characterized by an abrupt reduction in median grain size, from gravel- to sand-size sediment, and by a shift in sand transport mode from wash load-dominated to suspended bed material load. We documented changes in channel stability, suspended sediment concentration, flux, and grain size across the GST of the Karnali River, Nepal. Upstream of the GST, gravel-bed channels are stable over hundred- to thousand-year time scales. Downstream, floodplain sediment is reworked by lateral bank erosion, particularly during monsoon discharges. Suspended sediment concentration, grain size, and flux reveal counterintuitive increases downstream of the GST. The results demonstrate a dramatic change in channel dynamics across the GST, from relatively fixed, steep gravel-bed rivers with infrequent avulsion to lower-gradient, relatively mobile sand-bed channels. The increase in sediment concentration and near-bed suspended grain size may be caused by enhanced channel mobility, which facilitates exchange between bed and bank material. These results bring new constraints on channel stability at mountain fronts and indicate that temporally and spatially limited sediment flux measurements down-stream of GSTs are more indicative of flow stage and floodplain recycling than of continental-scale sediment flux and denudation rate estimates.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined