Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries

Nano Energy(2020)

Cited 157|Views26
No score
Abstract
Rational design and construction of highly efficient and durable non-noble-metal bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial to promote the widespread implementation of rechargeable Zn-air batteries. Herein, a bifunctional catalyst comprising Co nanoparticles uniformly embedded in hollow nitrogen doped carbon tubes (Co@hNCTs) is fabricated by a facile tube-directed templating strategy. In this strategy, surfactant-treated polypyrrole (PPy) nanotubes serve as the structure-guiding templates for efficient capture of Co2+, realizing the in-situ growth of zeolitic imidazolate frameworks-67 (ZIF-67) nanocrystals on PPy nanotubes. Sodium laurylsulfonate acts as anionic surfactant to endow PPy nanotubes with functional electronegative surface and strong anchoring effect toward ZIF-67, playing the pivotal role in binding of ZIF-67 nanocrystals with PPy nanotubes potently. Consequently, the developed catalyst presents a superior ORR activity with the half-wave potential of 0.87 V excellent durability with only a 7 mV loss of half-wave potential after 5000 cycles. The catalyst also exhibits superior catalytic performance for OER. When serving as an air electrode in Zn-air batteries, a large power density of 149 mW cm−2 and long-term cyclability for over 500 h are realized in ambient air, implying the great potential in practical application.
More
Translated text
Key words
Polypyrrole,Metal-organic frameworks,Hollow nanotubes,1D hierarchical structure,Zn-air batteries
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined