A highly CMOS compatible hafnia-based ferroelectric diode

NATURE COMMUNICATIONS(2020)

引用 103|浏览125
暂无评分
摘要
Memory devices with high speed and high density are highly desired to address the ‘memory wall’ issue. Here we demonstrated a highly scalable, three-dimensional stackable ferroelectric diode, with its rectifying polarity modulated by the polarization reversal of Hf 0.5 Zr 0.5 O 2 films. By visualizing the hafnium/zirconium lattice order and oxygen lattice order with atomic-resolution spherical aberration-corrected STEM, we revealed the correlation between the spontaneous polarization of Hf 0.5 Zr 0.5 O 2 film and the displacement of oxygen atom, thus unambiguously identified the non-centrosymmetric Pca2 1 orthorhombic phase in Hf 0.5 Zr 0.5 O 2 film. We further implemented this ferroelectric diode in an 8 layers 3D array. Operation speed as high as 20 ns and robust endurance of more than 10 9 were demonstrated. The built-in nonlinearity of more than 100 guarantees its self-selective property that eliminates the need for external selectors to suppress the leakage current in large array. This work opens up new opportunities for future memory hierarchy evolution.
更多
查看译文
关键词
Electrical and electronic engineering,Electronic devices,Electronic properties and materials,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要