Evidence For The Dominance Of Carrier-Induced Band Gap Renormalization Over Biexciton Formation In Cryogenic Ultrafast Experiments On Mos2 Monolayers

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2020)

引用 17|浏览46
暂无评分
摘要
Transition-metal dichalcogenides (TMDs) such as MoS2 display promising electrical and optical properties in the monolayer limit. Due to strong quantum confinement, TMDs provide an ideal environment for exploring excitonic physics using ultrafast spectroscopy. However, the interplay between collective excitation effects on single excitons such as band gap renormalization/exciton binding energy (BGR/EBE) change and multiexciton effects such biexciton formation remains poorly understood. Using two-dimensional electronic spectroscopy, we observe the dominance of single-exciton BGR/EBE signals over optically induced biexciton formation. We make this determination based on a lack of strong PIA features at T = 0 fs in the cryogenic spectra. By means of nodal line slope analysis, we determine that spectral diffusion occurs faster than BGR/EBE change, indicative of distinct processes. These results indicate that at higher sub-Mott limit fluences, collective effects on single excitons dominate biexciton formation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要