Ratiometric Strategy for Electrochemical Sensing of Carbaryl Residue in Water and Vegetable Samples.

Sensors (Basel, Switzerland)(2020)

Cited 12|Views16
No score
Abstract
Accurate analysis of pesticide residue in real samples is essential for food safety and environmental protection. However, a traditional electrochemical sensor based on single-signal output is easily affected by background noise, environmental conditions, electrode diversity, and a complex matrix of samples, leading to extremely low accuracy. Hence, in this paper, a ratiometric strategy based on dual-signal output was adopted to build inner correction for sensing of widely-used carbaryl (CBL) for the first time. By comparison, Nile blue A (NB) was selected as reference probe, due to its well-defined peak, few effects on the target peak of CBL, and excellent stability. The effects of a derivatization method, technique mode, and pH were also investigated. Then the performance of the proposed ratiometric sensor was assessed in terms of three aspects including the elimination of system noise, electrode deviation and matrix effect. Compared with traditional single-signal sensor, the ratiometric sensor showed a much better linear correlation coefficient (r > 0.99), reproducibility (RSD < 10%), and limit of detection (LOD = 1.0 μM). The results indicated the introduction of proper reference probe could ensure the interdependence of target and reference signal on the same sensing environment, thus inner correction was fulfilled, which provided a promising tool for accurate analysis.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined