PERK-eIF2α-ATF4 signaling contributes to osteogenic differentiation of periodontal ligament stem cells

Journal of Molecular Histology(2020)

引用 11|浏览14
暂无评分
摘要
Protein kinase-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein located in the endoplasmic reticulum (ER). The PERK-eukaryotic initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway has been proved to be involved in osteoblast differentiation, but the involvement of the PERK-eIF2α-ATF4 signaling pathway in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) has remained unclear. Therefore, the aim of this study was to explore the role of PERK in osteogenic differentiation of hPDLSCs and to assess whether PERK-eIF2α-ATF4 contributes to the process of osteogenic differentiation in hPDLSCs. In our study, we constructed PERK-overexpressed and PERK-silenced hPDLSCs by lentiviral transduction. Furthermore, lentivirus-transfected cells were induced to differentiate into osteoblast cells for different days. Alkaline phosphatase (ALP) activity and Alizarin Red staining were used to evaluate the mineralization capacity, and the expression levels of related genes-ATF4, ALP, bone sialoprotein, runt-related transcription factor 2 (Runx2), and osteocalcin were measured to evaluate the osteogenic differentiation of hPDLSCs. The results showed that over-expression of PERK greatly increased ALP activity and the expression levels of related osteogenic genes, which displayed the strongest osteogenesis capacity. However, suppression of PERK caused decreased ALP activity and the weakest osteogenesis capacity, and the levels of ATF4 and p-eIF2α in PERK-silenced hPDLSCs were also decreased. Our results indicated that the PERK gene plays an important role in the differentiation of hPDLSCs to osteoblast-like cells. The PERK-eIF2α-ATF4 signaling pathway contributes to osteoblast differentiation of hPDLSCs.
更多
查看译文
关键词
Protein kinase-like endoplasmic reticulum kinase,Activating transcription factor-4,Osteogenic differentiation,Human periodontal ligament stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要