Indoor Microbiome: Quantification of Exposure and Association with Geographical Location, Meteorological Factors, and Land Use in France.

MICROORGANISMS(2020)

引用 13|浏览67
暂无评分
摘要
The indoor microbial community is a mixture of microorganisms resulting from outdoor ecosystems that seed the built environment. However, the biogeography of the indoor microbial community is still inadequately studied. Dust from more than 3000 dwellings across France was analyzed by qPCR using 17 targets: 10 molds, 3 bacteria groups, and 4 mites. Thus, the first spatial description of the main indoor microbial allergens on the French territory, in relation with biogeographical factors influencing the distribution of microorganisms, was realized in this study. Ten microorganisms out of 17 exhibited increasing abundance profiles across the country: Five microorganisms (Dermatophagoides pteronyssinus, Dermatophagoides spp., Streptomyces spp., Cladosporium sphaerospermum, Epicoccum nigrum) from northeast to southwest, two (Cryptococcus spp., Alternaria alternata) from northwest to southeast, Mycobacteria from east to west, Aspergillus fumigatus from south to north, and Penicillium chrysogenum from south to northeast. These geographical patterns were partly linked to climate and land cover. Multivariate analysis showed that composition of communities seemed to depend on landscapes, with species related to closed and rather cold and humid landscapes (forests, located in the northeast) and others to more open, hot, and dry landscapes (herbaceous and coastal regions, located in the west). This study highlights the importance of geographical location and outdoor factors that shape communities. In order to study the effect of microorganisms on human health (allergic diseases in particular), it is important to identify biogeographic factors that structure microbial communities on large spatial scales and to quantify the exposure with quantitative tools, such as the multi-qPCR approach.
更多
查看译文
关键词
indoor exposure,molds,bacteria,dust mites,qPCR,electrostatic dust collector
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要