谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Intraband Cooling and Auger Recombination in Weakly to Strongly Quantum-Confined CsPbBr3 Perovskite Nanocrystals

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2024)

引用 0|浏览9
暂无评分
摘要
Semiconductor nanocrystals (NCs) with size-tuned energy gaps present unique and desirable properties for optoelectronic applications. Recent synthetic advancements offer routes to spheroidal CsPbBr3 perovskite NCs in the strong quantum confinement regime with narrow size dispersion. Using tunable femtosecond laser pulses, we examine intraband carrier relaxation using transient absorption spectroscopy and show that, across the transition from weak to strong confinement, hot carrier lifetime increases compared to larger bulk-like particles. However, further increases of confinement subsequently lead to a reduction of the hot carrier lifetime and increase of the non-radiative Auger recombination rate. Finally, we show that hot carrier lifetimes increase as a function of excess energy above the band gap less sensitively under high confinement in comparison to the bulk. Understanding such unique trends is important for maximizing hot carrier lifetimes for use in next-generation hot carrier devices as well as evaluating the transition from weak to strong confinement.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要