Measuring 3D indoor air velocity via an inexpensive low-power ultrasonic anemometer

Energy and Buildings(2020)

引用 25|浏览85
暂无评分
摘要
The ability to inexpensively monitor indoor air speed and direction on a continuous basis would transform the control of environmental quality and energy use in buildings. Air motion transports energy, ventilation air, and pollutants around building interiors and their occupants, and measured feedback about it could be used in numerous ways to improve building operation. However indoor air movement is rarely monitored because of the expense and fragility of sensors. This paper describes a unique anemometer developed by the authors, that measures 3-dimensional air velocity for indoor environmental applications, leveraging new microelectromechanical systems (MEMS) technology for ultrasonic range-finding. The anemometer uses a tetrahedral arrangement of four transceivers, the smallest number able to capture a 3-dimensional flow, that provides greater measurement redundancy than in existing anemometry. We describe the theory, hardware, and software of the anemometer, including algorithms that detect and eliminate shielding errors caused by the wakes from anemometer support struts. The anemometer has a resolution and starting threshold of 0.01 m/s, an absolute air speed error of 0.05 m/s at a given orientation with minimal filtering, 3.1° angle- and 0.11 m/s velocity errors over 360° azimuthal rotation, and 3.5° angle- and 0.07 m/s velocity errors over 135° vertical declination. It includes radio connection to internet and is able to operate standalone for multiple years on a standard battery. The anemometer also measures temperature and has a compass and tilt sensor so that flow direction is globally referenced regardless of anemometer orientation. The retail cost of parts is $100 USD, and all parts snap together for ease of assembly.
更多
查看译文
关键词
3-dimensional air velocity monitoring,Indoor anemometer,Tetrahedron,Ultrasonic anemometry,Ultrasonic pulse time of flight,MEMS ultrasound,Sonic temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要