BiOCOOH Microflowers Decorated with Ag/Ag2CrO4 Nanoparticles as Highly Efficient Photocatalyst for the Treatment of Toxic Wastewater

CATALYSTS(2020)

引用 30|浏览4
暂无评分
摘要
A novel flower-like Ag/Ag2CrO4/BiOCOOH heterojunction photocatalyst was synthesized by a facile in-situ precipitation strategy combined with photoreduction treatment. Morphological studies revealed that numerous Ag/Ag2CrO4 nanoparticles were evenly anchored on BiOCOOH microflowers, producing a novel heterojunction with the compactly interfacial contact. Optical absorption characterization demonstrated that Ag/Ag2CrO4/BiOCOOH possessed much better sunlight harvesting ability than Ag2CrO4/BiOCOOH and BiOCOOH. Photocatalytic experiments verified that compared with BiOCOOH, Ag2CrO4, Ag/Ag2CrO4, and Ag2CrO4/BiOCOOH, Ag/Ag2CrO4/BiOCOOH achieved remarkable efficiency by eliminating 100% of rhodamine B (RhB), 82.6% of methyl orange (MO) or 69.4% of ciprofloxacin (CIP) within 50 min at a catalyst dosage of 0.4 g/L. The high photocatalytic performance is likely owing to the improved sunlight response and the distinctly suppressed recombination of charge carriers arising from the formation of the novel 3D hierarchical heterostructure. The quenching test signified that h(+), and center dot O-2(-) were detected as the prevailing active species in wastewater treatment. This study may provide a viable strategy for enhancing the photocatalytic performance of wide band-gap semiconductors.
更多
查看译文
关键词
Ag/Ag2CrO4,BiOCOOH,ternary heterojunction,harmful pollutants,photocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要