Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes

Joule(2020)

引用 83|浏览18
暂无评分
摘要
Inorganic-organic hybrid solid electrolytes are promising material systems for all solid-state batteries (ASSBs). These electrolytes contain numerous solid|solid interfaces that govern transport pathways, electrode|electrolyte compatibility, and durability. This paper evaluates the role that electrode|electrolyte interfaces and electrolyte structure have on electrochemical performance. Atomic force microscopy techniques reveal how mechanical, adhesion, and morphological properties transform in a series of model hybrid solid electrolytes. These measurements are mapped to sub-surface microstructural features using synchrotron nano-tomography. Hybrid solid electrolytes with shorter polymer chains demonstrate a higher adhesion (>100 nN), Young’s Modulus (6.4 GPa), capacity (114.6 mAh/g), and capacity retention (92.9%) than hybrid electrolytes with longer polymer chains (i.e., higher molecular weight). Extrinsic interfacial properties largely dictate electrochemical performance in ASSBs. Microstructural control over inorganic constituents may provide a means for tailoring interfacial properties in hybrid solid electrolytes.
更多
查看译文
关键词
solid-state battery,characterization,atomic force microscopy,synchrotron,experimentation,solid electrolyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要