谷歌浏览器插件
订阅小程序
在清言上使用

Fabrication of Highly Efficient Thermal Energy Storage Composite from Waste Polystyrenes

CHEMICAL ENGINEERING SCIENCE(2020)

引用 21|浏览3
暂无评分
摘要
To high value-added utilization of waste polystyrene (PS) foam, an in-situ phase change material (PCM) encapsulation protocol was realized by using waste PS foam as a holding material for thermal energy storage with a shape-stabilization methodology. Mechanistic study suggested that the robust Lewis acid catalysed Friedel-Crafts reaction involved was the key to the success of this method owing to a simultaneous process of porous structure formation and PCM impregnation, by which the PCM encapsulation rate can attain to 68.7% without leakage. Lewis acid catalysts used in the process were able to be converted to their corresponding metal oxides via a simple alkali treatment, which not only diminished the tedious metal species isolation step but also made an external thermal conductivity enhancement that an utmost 61.0% thermal conductivity enhancement can be achieved compared with that of pristine paraffin wax. Additionally, the PCM composite preparation process can be facilely scaled up which strongly demonstrated its real application feasibility. Moreover, besides waste PS foam, other waste PS based materials were proven to be feasible towards PCM holding materials with the same approach. (C) 2020 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Thermal energy storage,Waste polystyrene,Value-added utilization,Hyper-crosslinked,Phase change materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要