Fractal breakage of porous carbonate sand particles: Microstructures and mechanisms

Powder Technology(2020)

引用 42|浏览64
暂无评分
摘要
In situ, three-dimensional (3D) characterizations of particle breakage in porous carbonate sands are presented, for the first time, with synchrotron-based micro computed tomography. Evolution of grain-scale characteristics are identified and quantified via elaborate image processing and topology analyses. The sequential 3D images reveal distinctly different fracture mechanisms for carbonate sands from silica sands. The angular shape of carbonate sand particles facilitates bending fracture, and particles with a lower sphericity and a higher porosity are more prone to break. 3D crack networks extracted from fractured particles imply considerable cleavage along initial pores. The fractal dimension of crack networks increases with external loading due to crack branching via cleavage. The resultant fragment size distribution also appears fractal and the fractal feature is valid down to the breakage limit of calcium carbonate. Crack propagation along the initial pores reduces the energy barrier for particle breakage and thus fracture strength of particles.
更多
查看译文
关键词
Carbonate sands,In situ tomography,Intra-granular pores,Fractal breakage,Cleavage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要