Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data

M. G. Aartsen,M. Ackermann,J. Adams,J. A. Aguilar,M. Ahlers,M. Ahrens,C. Alispach,K. Andeen,T. Anderson,I. Ansseau,G. Anton,C. Argüelles,J. Auffenberg,S. Axani,P. Backes,H. Bagherpour,X. Bai,A. Barbano,S. W. Barwick,V. Baum,R. Bay,J. J. Beatty,K.-H. Becker,J. Becker Tjus,S. BenZvi,D. Berley,E. Bernardini,D. Z. Besson,G. Binder,D. Bindig,E. Blaufuss,S. Blot,C. Bohm,M. Börner,S. Böser,O. Botner,E. Bourbeau,J. Bourbeau,F. Bradascio,J. Braun,H.-P. Bretz,S. Bron,J. Brostean-Kaiser,A. Burgman,R. S. Busse,T. Carver,C. Chen,E. Cheung,D. Chirkin,K. Clark,L. Classen,G. H. Collin,J. M. Conrad,P. Coppin,P. Correa,D. F. Cowen,R. Cross,P. Dave,J. P. A. M. de André,C. De Clercq,J. J. DeLaunay,H. Dembinski,K. Deoskar,S. De Ridder,P. Desiati,K. D. de Vries,G. de Wasseige,M. de With,T. DeYoung,A. Diaz,J. C. Díaz-Vélez,H. Dujmovic,M. Dunkman,E. Dvorak,B. Eberhardt,T. Ehrhardt,B. Eichmann,P. Eller,J. J. Evans,P. A. Evenson,S. Fahey,A. R. Fazely,J. Felde,K. Filimonov,C. Finley,A. Franckowiak,E. Friedman,A. Fritz,T. K. Gaisser,J. Gallagher,E. Ganster,S. Garrappa,L. Gerhardt,K. Ghorbani,T. Glauch,T. Glüsenkamp,A. Goldschmidt,J. G. Gonzalez,D. Grant,Z. Griffith,M. Günder,M. Gündüz,C. Haack,A. Hallgren,L. Halve,F. Halzen,K. Hanson,D. Hebecker,D. Heereman,K. Helbing,R. Hellauer,F. Henningsen,S. Hickford,J. Hignight,G. C. Hill,K. D. Hoffman,R. Hoffmann,T. Hoinka,B. Hokanson-Fasig,K. Hoshina,F. Huang,M. Huber,K. Hultqvist,M. Hünnefeld,R. Hussain,S. In,N. Iovine,A. Ishihara,E. Jacobi,G. S. Japaridze,M. Jeong,K. Jero,B. J. P. Jones,W. Kang,A. Kappes,D. Kappesser,T. Karg,M. Karl,A. Karle,U. Katz,M. Kauer,J. L. Kelley,A. Kheirandish,J. Kim,T. Kintscher,J. Kiryluk,T. Kittler,S. R. Klein,R. Koirala,H. Kolanoski,L. Köpke,C. Kopper,S. Kopper,D. J. Koskinen,M. Kowalski,K. Krings,G. Krückl,N. Kulacz,S. Kunwar,N. Kurahashi,A. Kyriacou,M. Labare,J. L. Lanfranchi,M. J. Larson,F. Lauber,J. P. Lazar,K. Leonard,M. Leuermann,Q. R. Liu,E. Lohfink,C. J. Lozano Mariscal,L. Lu,F. Lucarelli,J. Lünemann,W. Luszczak,J. Madsen,G. Maggi,K. B. M. Mahn,Y. Makino,K. Mallot,S. Mancina,I. C. Mariş,R. Maruyama,K. Mase,R. Maunu,K. Meagher,M. Medici,A. Medina,M. Meier,S. Meighen-Berger,T. Menne,G. Merino,T. Meures,S. Miarecki,J. Micallef,G. Momenté,T. Montaruli,R. W. Moore,M. Moulai,R. Nagai,R. Nahnhauer,P. Nakarmi,U. Naumann,G. Neer,H. Niederhausen,S. C. Nowicki,D. R. Nygren,A. Obertacke Pollmann,A. Olivas,A. O’Murchadha,E. O’Sullivan,T. Palczewski,H. Pandya,D. V. Pankova,N. Park,P. Peiffer,C. Pérez de los Heros,D. Pieloth,E. Pinat,A. Pizzuto,M. Plum,P. B. Price,G. T. Przybylski,C. Raab,A. Raissi,M. Rameez,L. Rauch,K. Rawlins,I. C. Rea,R. Reimann,B. Relethford,G. Renzi,E. Resconi,W. Rhode,M. Richman,S. Robertson,M. Rongen,C. Rott,T. Ruhe,D. Ryckbosch,D. Rysewyk,I. Safa,S. E. Sanchez Herrera,A. Sandrock,J. Sandroos,M. Santander,S. Sarkar,S. Sarkar,K. Satalecka,M. Schaufel,P. Schlunder,T. Schmidt,A. Schneider,J. Schneider,L. Schumacher,S. Sclafani,D. Seckel,S. Seunarine,M. Silva,R. Snihur,J. Soedingrekso,D. Soldin,S. Söldner-Rembold,M. Song,G. M. Spiczak,C. Spiering,J. Stachurska,M. Stamatikos,T. Stanev,A. Stasik,R. Stein,J. Stettner,A. Steuer,T. Stezelberger,R. G. Stokstad,A. Stößl,N. L. Strotjohann,T. Stuttard,G. W. Sullivan,M. Sutherland,I. Taboada,F. Tenholt,S. Ter-Antonyan,A. Terliuk,S. Tilav,L. Tomankova,C. Tönnis,S. Toscano,D. Tosi,M. Tselengidou,C. F. Tung,A. Turcati,R. Turcotte,C. F. Turley,B. Ty,E. Unger,M. A. Unland Elorrieta,M. Usner,J. Vandenbroucke,W. Van Driessche,D. van Eijk,N. van Eijndhoven,S. Vanheule,J. van Santen,M. Vraeghe,C. Walck,A. Wallace,M. Wallraff,N. Wandkowsky,T. B. Watson,C. Weaver,M. J. Weiss,J. Weldert,C. Wendt,J. Werthebach,S. Westerhoff,B. J. Whelan,N. Whitehorn,K. Wiebe,C. H. Wiebusch,L. Wille,D. R. Williams,L. Wills,M. Wolf,J. Wood,T. R. Wood,K. Woschnagg,G. Wrede,S. Wren,D. L. Xu,X. W. Xu,Y. Xu,J. P. Yanez,G. Yodh,S. Yoshida,T. Yuan

The European Physical Journal C(2020)

引用 12|浏览110
暂无评分
摘要
The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above ∼ 1 GeV , as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p -value of p_IO = 15.3% and CL_s=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of δ _CP and obtained from energies E_ν≳ 5 GeV , it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要