Chrome Extension
WeChat Mini Program
Use on ChatGLM

Impact Of Methane Energy Fraction On Emissions, Performance And Cyclic Variability In Low-Load Dual Fuel Combustion At Early Injection Timings

INTERNATIONAL JOURNAL OF ENGINE RESEARCH(2021)

Cited 11|Views3
No score
Abstract
This work experimentally examines the effect of methane (a natural gas surrogate) substitution on early injection dual fuel combustion at representative low loads of 3.3 and 5.0 bar BMEPs in a single-cylinder compression ignition engine. Gaseous methane fumigated into the intake manifold at various methane energy fractions was ignited using a high-pressure diesel pilot injection at 310 degrees CA. For the 3.3 bar BMEP, methane energy fraction sweeps from 50% to 90% were performed; while at 5.0 bar BMEP, methane energy fraction sweeps from 70% to 90% were performed. It is observed that minimum methane energy fraction is limited by maximum pressure rise rate leading to knock and maximum methane energy fraction is limited by a high coefficient of variation in netIMEP, which leads to high cyclic variations. For 3.3 bar BMEP, maximum pressure rise rate is 8 bar/degrees CA at 50% methane energy fraction while at 5 bar BMEP, it is 12 bar/degrees CA at 70% methane energy fraction. For 3.3 bar BMEP, engine-out NOx emissions decrease by 43 times when methane energy fraction increases from 50% to 90%, and it decreases by nearly 46 times when methane energy fraction increases from 70% to 90% at 5 bar BMEP. Engine-out unburned hydrocarbon emissions increase by nearly 9 times when methane energy fraction increases from 50% to 90% at 3.3 bar BMEP, and it increases by nearly 5 times when methane energy fraction increases from 70% to 90% at 5.0 bar BMEP. Engine-out carbon monoxide emissions increase by nearly 7 times when methane energy fraction increases from 50% to 90% at 3.3 bar BMEP and by nearly 5 times when methane energy fraction increases from 70% to 90% at 5.0 bar BMEP. In addition, cyclic combustion variations at both loads were analyzed to obtain further insights into the combustion process and identify opportunities to further improve fuel conversion efficiencies at low load operation.
More
Translated text
Key words
Dual fuel, low temperature combustion, RCCI, cyclic variations, high efficiency, emissions reduction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined