Bacterial Vesicles Mediate Extracellular Electron Transfer

ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS(2020)

引用 43|浏览11
暂无评分
摘要
Many Gram-negative bacteria are known to release outer membrane vesicles (OMVs) into the surrounding environment during normal growth; OMVs perform diverse biological and environmental functions (e.g., virulence factor transport, horizontal gene transfer, quorum signaling, cellular defense, and cell-to-cell communication). However, the production of OMVs has not been reported in Geobacter species, and their role in extracellular electron transfer (EET) is unknown. Here, we demonstrate, for the first time, that Geobacter sulfurreducens releases OMVs containing abundant cytochromes that can promote EET from microbial cells to an anode. OMVs released by Geobacter cells not only promote exoelectrogen EET (1.73-fold higher current density in Shewanella oneidensis MR-1) but also confer electrogenic ability to non-exoelectrogens (G. sulfurreducens mutant strain Delta omcZ and Escherichia coli). These functions are mainly attributed to the abundance of c-type cytochromes bound on or entrapped in OMVs. Our findings suggest that redox-active OMVs can serve as shared mediators facilitating EET in natural ecosystems, representing an ecologically important but overlooked biological electron transfer process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要