Ortho-Substituted -Phenyl Mannoside Derivatives Promoted Early-Stage Adhesion and Biofilm Formation of E. coli 83972

ACS APPLIED MATERIALS & INTERFACES(2020)

Cited 6|Views9
No score
Abstract
Prevention of catheter-associated urinary tract infection (CAUTI) over long-term usage of urinary catheters remains a great challenge. Bacterial interference using nonpathogenic bacteria, such as E. coli 83972, have been investigated in many pilot-scale clinical studies as a potentially nonantibiotic based strategy for CAUTI prevention. We have demonstrated that preforming a dense and stable biofilm of the nonpathogenic E. coli greatly enhances their capability to prevent pathogen colonization. Such nonpathogenic biofilms were formed by E. coli 83972 expressing type 1 fimbriae (fim+ E. coli 83972) on mannoside-presenting surfaces. In this work, we report the synthesis of a series of mannoside derivatives with a wide range of binding affinities, all being equipped with a handle for covalent attachment to silicone surfaces. We established a high-throughput competitive assay based on mannoside-modified particles and flow-cytometry to directly measure the binding affinity between the mannoside ligands and fim + E. coli 83972. We demonstrated that the bacterial adhesion and biofilm formation were strongly correlated to the binding affinity of the immobilized mannoside ligands. Mass spectrometry based proteomic analysis indicated a substantial difference in the proteome of the extracellular polymeric substance (EPS) secreted by biofilms on different mannoside surfaces, which might be related to the biofilm stability.
More
Translated text
Key words
mannoside,benign bacteria,FimH,biofilm,flow cytometry,CAUTI
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined