谷歌浏览器插件
订阅小程序
在清言上使用

Electron interactions in strain-induced zero-energy flat band in twisted bilayer graphene near the magic angle

arXiv (Cornell University)(2020)

引用 4|浏览12
暂无评分
摘要
In the vicinity of the magic angle in twisted bilayer graphene (TBG), the two low-energy van Hove singularities (VHSs) become exceedingly narrow1-10 and many exotic correlated states, such as superconductivity, ferromagnetism, and topological phases, are observed11-16. Heterostrain, which is almost unavoidable in the TBG, can modify its single-particle band structure and lead to novel properties of the TBG that have never been considered so far. Here, we show that heterostrain in a TBG near the magic angle generates a new zero-energy flat band between the two VHSs. Doping the TBG to partially fill the zero-energy flat band, we observe a correlation-induced gap of about 10 meV that splits the flat band. By applying perpendicular magnetic fields, a large and linear response of the gap to magnetic fields is observed, attributing to the emergence of large orbital magnetic moments in the TBG when valley degeneracy of the flat band is lifted by electron-electron interactions. The orbital magnetic moment per moire supercell is measured as about 15 uB in the TBG.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要