OxLDL enhances choroidal neovascularization lesion through inducing vascular endothelium to mesenchymal transition process and angiogenic factor expression

Cellular Signalling(2020)

引用 8|浏览16
暂无评分
摘要
Oxidized lowdensity lipoprotein (OxLDL) can impact the formation of choroidal neovascularization (CNV) via regulating endothelial cell proliferation and secretion of inflammatory and angiogenic factors, but the specific molecular mechanism is not clear. In this study, we evaluated the role of molecular pathways that affect angiogenesis at different stages. In vivo, we found that intravitreal injection of OxLDL following the laser photocoagulation significantly enhanced the CNV size. In vitro experiment confirmed that OxLDL impacts the formation of CNV via regulating endothelial cell proliferation in Rhesus monkey choroid-retinal vascular endothelial cells (RF/6A) and secretion of inflammatory and angiogenic factors. OxLDL promotes angiogenesis through increasing VEGF and some other pro-angiogenic factors expression. Treatment with LY294002, a specific inhibitor of the PI3K pathway, could abrogate VEGF-increased angiogenesis. OxLDL induced the TGF-β2/Smad signaling axis to participate in the maintenance of neovascular formation. Treatment with PD98059, a specific inhibitor of the MEK pathway, could abrogate it. We also found that OxLDL increased the level of pro-angiogenic factors and promoted the endothelium-mesenchymal transition (EndMT) process, which is important for early tube formation and late maintaining of angiogenesis respectively. In summary, our results indicate that OxLDL affects CNV formation by increasing VEGF expression in the early stage, with activation of the MEK/ERK pathway. And OxLDL induces the TGF-β2/Smad signaling axis, which leads to EndMT, to affects the later stage of CNV formation by activating the PI3K/AKT pathway.
更多
查看译文
关键词
Oxidized phospholipids,Choroidal neovascularization,Angiogenesis,Epithelial-mesenchymal transition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要