谷歌浏览器插件
订阅小程序
在清言上使用

Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines.

Plant science : an international journal of experimental plant biology(2020)

引用 23|浏览18
暂无评分
摘要
Previous studies have demonstrated that the freezing tolerance (FT) of grapevine was enhanced by foliar application of exogenous abscisic acid (exo-ABA), a treatment which might be incorporated into cultural practices to mitigate cold damage in vineyards. To investigate the underlying mechanisms of this response, a two-year (2017 and 2018) study was conducted to characterize the effects of exo-ABA on greenhouse-grown 'Cabernet franc' grapevine. In control grapevines, both physiological (deeper dormancy) and biochemical (sugar accumulation in buds) changes occurred, indicating that grapevines initiated cold acclimation in the greenhouse. Compared to control, exo-ABA decreased stomatal conductance 2 h after application. Two weeks post application, exo-ABA treated grapevines showed accelerated transition of grapevine physiology during cold acclimation (increased depth of dormancy, decreased bud water content and enhanced bud FT), relative to control. Exo-ABA induced the accumulation of several sugars in buds including the raffinose family oligosaccharides (RFOs), and the RFO precursor, galactinol. The expression of raffinose and galactinol synthase genes was higher in exo-ABA treated grapevine buds, compared to control. The new findings from this study have advanced our understanding of the role of ABA in grapevine FT, which will be useful to develop future strategies to protect grapevines from cold damage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要