Development of Novel Lightweight Dual-Phase Al-Ti-Cr-Mn-V Medium-Entropy Alloys with High Strength and Ductility

ENTROPY(2020)

Cited 10|Views13
No score
Abstract
A novel lightweight Al-Ti-Cr-Mn-V medium-entropy alloy (MEA) system was developed using a nonequiatiomic approach and alloys were produced through arc melting and drop casting. These alloys comprised a body-centered cubic (BCC) and face-centered cubic (FCC) dual phase with a density of approximately 4.5 g/cm(3). However, the fraction of the BCC phase and morphology of the FCC phase can be controlled by incorporating other elements. The results of compression tests indicated that these Al-Ti-Cr-Mn-V alloys exhibited a prominent compression strength (1940 MPa) and ductility (30%). Moreover, homogenized samples maintained a high compression strength of 1900 MPa and similar ductility (30%). Due to the high specific compressive strength (0.433 GPag/cm(3)) and excellent combination of strength and ductility, the cast lightweight Al-Ti-Cr-Mn-V MEAs are a promising alloy system for application in transportation and energy industries.
More
Translated text
Key words
high-entropy alloy,medium-entropy alloy,lightweight alloy,mechanical property
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined