Multi-cation perovskites prevent carrier reflection from grain surfaces.

NATURE MATERIALS(2020)

Cited 87|Views29
No score
Abstract
Methylammonium is shown to influence the crystallization process in hybrid lead halide perovskites, leading to a more homogeneous chemical distribution of caesium and formamidinium and improved charge transport between grains in multi-cation systems. The composition of perovskite has been optimized combinatorially such that it often contains six components (A(x)B(y)C(1-x-y)PbX(z)Y(3-z)) in state-of-art perovskite solar cells. Questions remain regarding the precise role of each component, and the lack of a mechanistic explanation limits the practical exploration of the large and growing chemical space. Here, aided by transient photoluminescence microscopy, we find that, in perovskite single crystals, carrier diffusivity is in fact independent of composition. In polycrystalline thin films, the different compositions play a crucial role in carrier diffusion. We report that methylammonium (MA)-based films show a high carrier diffusivity of 0.047 cm(2) s(-1), while MA-free mixed caesium-formamidinium (CsFA) films exhibit an order of magnitude lower diffusivity. Elemental composition studies show that CsFA grains display a graded composition. This curtails electron diffusion in these films, as seen in both vertical carrier transport and surface potential studies. Incorporation of MA leads to a uniform grain core-to-edge composition, giving rise to a diffusivity of 0.034 cm(2) s(-1) in CsMAFA films. A model that invokes competing crystallization processes allows us to account for this finding, and suggests further strategies to achieve homogeneous crystallization for the benefit of perovskite optoelectronics.
More
Translated text
Key words
Electronic materials,Materials for energy and catalysis,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined