Weak-lensing observables in relativistic N-body simulations

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2020)

引用 29|浏览18
暂无评分
摘要
We present a numerical weak-lensing analysis that is fully relativistic and non-perturbative for the scalar part of the gravitational potential and first order in the vector part, frame dragging. Integrating the photon geodesics backwards from the observer to the emitters, we solve the Sachs optical equations and study in detail the weak-lensing convergence, ellipticity and rotation. For the first time, we apply such an analysis to a high-resolution relativistic N-body simulation, which consistently includes the leading-order corrections due to general relativity on both large and small scales. These are related to the question of gauge choice and to post-Newtonian corrections, respectively. We present the angular power spectra and one-point probability distribution functions for the weak-lensing variables, which we find are broadly in agreement with comparable Newtonian simulations. Our geometric approach, however, is more robust and flexible, and can therefore be applied consistently to non-standard cosmologies and modified theories of gravity.
更多
查看译文
关键词
gravitation,gravitational lensing: weak,software: simulations,large-scale structure of Universe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要