Biological and physicochemical implications of the aging process on titanium and zirconia implant material surfaces

The Journal of Prosthetic Dentistry(2021)

引用 8|浏览10
暂无评分
摘要
Statement of problem Changes in physicochemical properties because of implant material aging and natural deterioration in the oral environment can facilitate microbial colonization and disturb the soft-tissue seal between the implant surfaces. Purpose The purpose of this in vitro study was to investigate the effect of aging time on the physicochemical profile of titanium (Ti) and zirconia (ZrO2) implant materials. Further microbiology and cell analyses were used to provide insights into the physicochemical implications of biological behavior. Material and methods Disk-shaped specimens of Ti and ZrO2 were submitted to roughness, morphology, and surface free energy (SFE) analyses before nonaging (NA) and after the aging process (A). To simulate natural aging, disks were subjected to low-temperature degradation (LTD) by using an autoclave at 134 ºC and 0.2 MPa pressure for 20 hours. The biological activities of the Ti and ZrO2 surfaces were determined by analyzing Candida albicans (C. albicans) biofilms and human gingival fibroblast (HGF) cell proliferation. For the microbiology assays, a variance analysis method (ANOVA) was used with the Tukey post hoc test. For the evaluation of cellular proliferation, the Kruskal-Wallis test followed by Dunn multiple comparisons were used. Results Ti nonaging (TNA) and ZrO2 nonaging (ZNA) disks displayed hydrophilic and lipophilic properties, and this effect was sustained after the aging process. Low-temperature degradation resulted in a modest change in intermolecular interaction, with 1.06-fold for TA and 1.10-fold for ZA. No difference in biofilm formation was observed between NA and A disks of the same material. After 48 hours, the viability of the attached HGF cells was very similar to that in the NA and A groups, regardless of the tested material. Conclusion The changes in the physicochemical properties of Ti and ZrO2 induced by the aging process do not interfere with C. albicans biofilm formation and HGF cell attachment, even after long-term exposure.
更多
查看译文
关键词
titanium,aging,zirconia,physicochemical implications
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要