Chrome Extension
WeChat Mini Program
Use on ChatGLM

Magnetite Nanoparticles Coated With Peg 3350-Tween 80: In Vitro Characterization Using Primary Cell Cultures

POLYMERS(2020)

Cited 26|Views4
No score
Abstract
Some medical applications of magnetic nanoparticles require direct contact with healthy tissues and blood. If nanoparticles are not designed properly, they can cause several problems, such as cytotoxicity or hemolysis. A strategy for improvement the biological proprieties of magnetic nanoparticles is their functionalization with biocompatible polymers and nonionic surfactants. In this study we compared bare magnetite nanoparticles against magnetite nanoparticles coated with a combination of polyethylene glycol 3350 (PEG 3350) and polysorbate 80 (Tween 80). Physical characteristics of nanoparticles were evaluated. A primary culture of sheep adipose mesenchymal stem cells was developed to measure nanoparticle cytotoxicity. A sample of erythrocytes from a healthy donor was used for the hemolysis assay. Results showed the successful obtention of magnetite nanoparticles coated with PEG 3350-Tween 80, with a spherical shape, average size of 119.2 nm and a zeta potential of +5.61 mV. Interaction with mesenchymal stem cells showed a non-cytotoxic propriety at doses lower than 1000 mu g/mL. Interaction with erythrocytes showed a non-hemolytic propriety at doses lower than 100 mu g/mL. In vitro information obtained from this work concludes that the use of magnetite nanoparticles coated with PEG 3350-Tween 80 is safe for a biological system at low doses.
More
Translated text
Key words
nanoparticles,polyethylene glycol,Tween 80,cytotoxicity,hemotoxicity,primary cell culture,medical applications
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined