Preparation and Modification of Biomass-Based Functional Rubbers for Removing Mercury(II) from Aqueous Solution.

Materials (Basel, Switzerland)(2020)

引用 21|浏览2
暂无评分
摘要
Biomass-based functional rubber adsorbents were designed and prepared via inverse vulcanization and post-modification. The plant rubber was synthesized with sulfur and renewable cottonseed oil as well as various micromolecular modifiers with nitrogen-containing functional groups. Results showed that types of nitrogen-containing functional groups and dosages of modifiers had a significant impact on the adsorption capacities of the resulting polymers for Hg2+. Notably, when the mass ratio of 2-aminoethyl methacrylate (AEMA) to sulfur was 0.05, the resulting polymer polysulfide-co-cottonseed oil modified by AEMA (SCOA2) showed the highest adsorption capacity (343.3 mg g-1) among all the prepared samples. Furthermore, the Hg2+ removal efficiency of SCOA2 remained over 80% of its original value after five adsorption-desorption cycles. It demonstrated a promising case for utilizing cheap industrial by-products (sulfur) and renewable materials (cottonseed oil). The prepared functional rubber provides alternative approach for mercury removal in waste utilization and sustainable chemistry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要