Extremely Stable Zeolites Developed Via Designed Liquid-Mediated Treatment

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 33|浏览23
暂无评分
摘要
Improving the stability of porous materials for practical applications is highly challenging. Aluminosilicate zeolites are utilized for adsorptive and catalytic applications, wherein they are sometimes exposed to high-temperature steaming conditions (similar to 1000 degrees C). As the degradation of high -silica zeolites originates from the defect sites in their frameworks, feasible defect-healing methods are highly demanded. Herein, we propose a method for healing defects to create extremely stable high-silica zeolites. High -silica (SiO2/Al2O3 > 240) zeolites with *BEA-, MFI-, and MOR-type topologies could be stabilized by significantly reducing the number of defect sites via a liquid-mediated treatment without using additional silylating agents. Upon exposure to extremely high temperature (900-1150 degrees C) steam, the stabilized zeolites retain their crystallinity and micropore volume, whereas the parent commercial zeolites degrade completely. The proposed self-defect-healing method provides new insights into the migration of species through porous bodies and significantly advances the practical applicability of zeolites in severe environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要