Heterogeneous recurrence analysis of spatial data.

CHAOS(2020)

引用 6|浏览18
暂无评分
摘要
Nonlinear dynamical systems often generate significant amounts of observational data such as time series, as well as high-dimensional spatial data. To delineate recurrence dynamics in the spatial data, prior efforts either extended the recurrence plot, which is a widely used tool for time series, to a four-dimensional hyperspace or utilized the network approach for recurrence analysis. However, very little has been done to differentiate heterogeneous types of recurrences in the spatial data (e.g., recurrence variations of state transitions in the spatial domain). Therefore, we propose a novel heterogeneous recurrence approach for spatial data analysis. First, spatial data are traversed with the Hilbert Space-Filling Curve to transform the variations of recurrence patterns from the spatial domain to the state-space domain. Second, we design an Iterated Function System to derive the fractal representation for the state-space trajectory of spatial data. Such a fractal representation effectively captures self-similar behaviors of recurrence variations and multi-state transitions in the spatial data. Third, we develop the Heterogeneous Recurrence Quantification Analysis of spatial data. Experimental results in both simulation and real-world case studies show that the proposed approach yields superior performance in the extraction of salient features to characterize and quantify heterogeneous recurrence dynamics in spatial data. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要