Identification and fine-mapping of a genetic locus underlying soybean tolerance to SMV infections

Plant Science(2020)

引用 9|浏览19
暂无评分
摘要
Soybean mosaic virus (SMV) is a major pathogen causing yield loss. Developing soybean plants tolerant or resistant to SMV is important for mitigating the adverse effects of the viral infection. However, most studies have focused on the resistance to normal SMV strains. Thus, investigations of the resistance or tolerance to the novel recombinant SMV strain have been limited. To address the threat of the recombinant SMV, two soybean parent genotypes with contrasting reactions to the recombinant SMV and 211 F9:11 recombinant inbred lines were evaluated under artificial inoculation conditions. The JD12 plants are resistant to the recombinant SMV, whereas HT is highly tolerant, but still susceptible. Genetic analyses suggested that the resistance of JD12 is controlled by a single dominant gene and the tolerance is a quantitative trait. The QTL mapping results revealed one QTL (qTsmv-13) for resistance and two QTLs (qTsmv-2 and qTsmv-3) for tolerance. A comparison between known resistance genes and the QTLs identified in this study suggested that qTsmv-13 and qTsmv-2 may correspond to Rsv1 and Rsv4, respectively, whereas qTsmv-3 represents a newly identified QTL for SMV tolerance. We further delimited qTsmv-3 to an interval of approximately 86 kb with a map-based cloning strategy. Only two of five candidate genes, Glyma.03G00550 and Glyma.03G00570, varied between the parents. Additionally, Glyma.03G00550, which is a multidrug and toxic compound extrusion transporter gene, is the likely candidate gene for qTsmv-3. In summary, our research opens a new avenue for formulating strategies to breed soybean varieties tolerant to SMV.
更多
查看译文
关键词
Recombinant SMV,Resistance,Tolerance,Map-based cloning,Necrotic spots,MATE
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要