HELLS And PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots.

Catrina Spruce, Sibongakonke Dlamini,Guruprasad Ananda, Naomi Bronkema,Hui Tian,Kenneth Paigen,Gregory W Carter, Christopher L Baker

GENES & DEVELOPMENT(2020)

引用 51|浏览17
暂无评分
摘要
Chromatin barriers prevent spurious interactions between regulatory elements and DNA-binding proteins. One such barrier, whose mechanism for overcoming is poorly understood, is access to recombination hot spots during meiosis. Here we show that the chromatin remodeler HELLS and DNA-binding protein PRDM9 function together to open chromatin at hot spots and provide access for the DNA double-strand break (DSB) machinery. Recombination hot spots are decorated by a unique combination of histone modifications not found at other regulatory elements. HELLS is recruited to hot spots by PRDM9 and is necessary for both histone modifications and DNA accessibility at hot spots. In male mice lacking HELLS, DSBs are retargeted to other sites of open chromatin, leading to germ cell death and sterility. Together, these data provide a model for hot spot activation in which HELLS and PRDM9 form a pioneer complex to create a unique epigenomic environment of open chromatin, permitting correct placement and repair of DSBs.
更多
查看译文
关键词
H3K4me3,chromatin remodeling,germ cells,histone modification,meiosis,nucleosome-depleted region,pioneer factor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要