Notch signaling and taxis mechanims regulate early stage angiogenesis: A mathematical and computational model.

PLOS COMPUTATIONAL BIOLOGY(2020)

引用 23|浏览35
暂无评分
摘要
During angiogenesis, new blood vessels sprout and grow from existing ones. This process plays a crucial role in organ development and repair, in wound healing and in numerous pathological processes such as cancer progression or diabetes. Here, we present a mathematical model of early stage angiogenesis that permits exploration of the relative importance of mechanical, chemical and cellular cues. Endothelial cells proliferate and move over an extracellular matrix by following external gradients of Vessel Endothelial Growth Factor, adhesion and stiffness, which are incorporated to a Cellular Potts model with a finite element description of elasticity. The dynamics of Notch signaling involving Delta-4 and Jagged-1 ligands determines tip cell selection and vessel branching. Through their production rates, competing Jagged-Notch and Delta-Notch dynamics determine the influence of lateral inhibition and lateral induction on the selection of cellular phenotypes, branching of blood vessels, anastomosis (fusion of blood vessels) and angiogenesis velocity. Anastomosis may be favored or impeded depending on the mechanical configuration of strain vectors in the ECM near tip cells. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands. Author summary Angiogenesis is the process by which new blood vessels grow from existing ones. This process plays a crucial role in organ development, in wound healing and in numerous pathological processes such as cancer growth or in diabetes. Angiogenesis is a complex, multi-step and well regulated process where biochemistry and physics are intertwined. The process entails signaling in vessel cells being driven by both chemical and mechanical mechanisms that result in vascular cell movement, deformation and proliferation. Mathematical models have the ability to bring together these mechanisms in order to explore their relative relevance in vessel growth. Here, we present a mathematical model of early stage angiogenesis that is able to explore the role of biochemical signaling and tissue mechanics. We use this model to unravel the regulating role of Jagged, Notch and Delta dynamics in vascular cells. These membrane proteins have an important part in determining the leading cell in each neo-vascular sprout. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands.
更多
查看译文
关键词
early stage angiogenesis,notch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要