Reduction of inflammation in a chronic periodontitis model in rats by TNF-α gene silencing with a topically applied siRNA-loaded calcium phosphate paste.

Acta Biomaterialia(2020)

Cited 22|Views28
No score
Abstract
We developed a calcium phosphate-based paste containing siRNA against TNF-α and investigated its anti-inflammatory and bone-healing effects in vitro and in vivo in a rat periodontitis model. The bioactive spherical CaP/PEI/siRNA/SiO2 nanoparticles had a core diameter of 40–90 nm and a positive charge (+23 mV) that facilitated cellular uptake. The TNF- α gene silencing efficiency of the nanoparticles in J774.2 monocytes, gingival-derived cells, and bone marrow-derived cells was 12 ± 2%, 36 ± 8%, and 35 ± 22%, respectively. CaP/PEI/siRNA/SiO2 nanoparticles cancelled the suppression of alkaline phosphatase (ALP) activity in LPS-stimulated bone marrow-derived cells. In vivo, ALP mRNA was up-regulated, TNF-α mRNA was down-regulated, and the amount of released TNF-α was significantly reduced after topical application of the calcium phosphate-based paste containing siRNA-loaded nanoparticles. The number of TNF-α-positive cells in response to CaP/PEI/siRNA/SiO2 nanoparticle application was lower than that observed in the absence of siRNA. Elevated ALP activity and numerous TRAP-positive cells (osteoclasts) were observed in response to the application of all calcium phosphate pastes. These results demonstrate that local application of a paste consisting of siRNA-loaded calcium phosphate nanoparticles successfully induces TNF-α silencing in vitro and in vivo and removes the suppression of ALP activity stimulated by inflammation.
More
Translated text
Key words
Calcium phosphate,Nanoparticles,Gene silencing,TNF-α,Periodontitis,Anti-inflammation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined