Biased Signaling of the G-Protein-Coupled Receptor β2AR Is Governed by Conformational Exchange Kinetics.

Structure (London, England : 1993)(2020)

引用 32|浏览63
暂无评分
摘要
G-protein-coupled receptors (GPCRs) mediate a wide range of human physiological functions by transducing extracellular ligand binding events into intracellular responses. GPCRs can activate parallel, independent signaling pathways mediated by G proteins or β-arrestins. Whereas "balanced" agonists activate both pathways equally, "biased" agonists dominantly activate one pathway, which is of interest for designing GPCR-targeting drugs because it may mitigate undesirable side effects. Previous studies demonstrated that β-arrestin activation is associated with transmembrane helix VII (TM VII) of GPCRs. Here, single-molecule fluorescence spectroscopy with the β2-adrenergic receptor (β2AR) in the ligand-free state showed that TM VII spontaneously fluctuates between one inactive and one active-like conformation. The presence of the β-arrestin-biased agonist isoetharine prolongs the dwell time of TM VII in the active-like conformation compared with the balanced agonist formoterol, suggesting that ligands can induce signaling bias by modulating the kinetics of receptor conformational exchange.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要