Enabling Field Asymmetric Ion Mobility Spectrometry Separation of Fentanyl-Related Compounds Using Controlled Humidity

ANALYTICAL CHEMISTRY(2020)

Cited 4|Views0
No score
Abstract
Due to the widespread abuse of opioids in recent years, the development of quick and reliable methods for analyzing compounds such as fentanyl and its derivatives is increasingly important. Ahead of online mass spectrometric analysis, field asymmetric ion mobility spectrometry (FAIMS) has previously been used for rapid ion prefiltering and demonstrated significantly improved peak capacity with the addition of vapor modifiers to the carrier gas. The application of FAIMS-mass spectrometry (MS) in the analysis of fentanyl and related compounds is presented herein with the use of a water vapor modifier. The inclusion of the water vapor modifier to the FAIMS methodology is made more robust with the incorporation of a humidity sensor. A dramatic improvement in the separation of fentanyl, alfentanil, 4-amino-phenyl-1-phenethylpiperidine (4-ANPP), norfentanyl, and heroin has been achieved, and the ability to distinguish the isobars in a mixture, alfentanil and ortho-isopropyl furanyl fentanyl, is demonstrated without lengthy chromatography.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined