Serine protease autotransporters of Enterobacteriaceae (SPATEs) are largely distributed among Escherichia coli isolated from the bloodstream

Brazilian Journal of Microbiology(2020)

引用 12|浏览14
暂无评分
摘要
Extraintestinal pathogenic Escherichia coli (ExPEC) is the major cause of Gram-negative-related sepsis. Bacterial survival in the bloodstream is mediated by a variety of virulence traits, including those mediating immune system evasion. Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors that can cause tissue damage and cleavage of molecules of the complement system, which is a key feature for the establishment of infection in the bloodstream. In this study, we analyzed 278 E. coli strains isolated from human bacteremia from inpatients of both genders, different ages, and clinical conditions. These strains were screened for the presence of SPATE-encoding genes as well as for phylogenetic classification and intrinsic virulence of ExPEC. SPATE-encoding genes were detected in 61.2% of the strains and most of these strains (44.6%) presented distinct SPATE-encoding gene profiles. sat was the most frequent gene among the entire collection, found in 34.2%, followed by vat (28.4%), pic (8.3%), and tsh (4.7%). Although in low frequencies, espC (0.7%), eatA (1.1%), and espI (1.1%) were detected and are being reported for the first time in extraintestinal isolates. The presence of SPATE-encoding genes was positively associated to phylogroup B2 and intrinsic virulent strains. These findings suggest that SPATEs are highly prevalent and involved in diverse steps of the pathogenesis of bacteremia caused by E. coli .
更多
查看译文
关键词
SPATE,Virulence factors,Escherichia coli,Bacteremia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要