In-cell Trityl-trityl Distance Measurements on Proteins.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2020)

Cited 43|Views16
No score
Abstract
Double-electron electron resonance (DEER) can be used to track the structural dynamics of proteins in their native environment, the cell. This method provides the distance distribution between two spin labels attached at specific, well-defined positions in a protein. For the method to be viable under in-cell conditions, the spin label and its attachment to the protein should exhibit high chemical stability in the cell. Here we present low-temperature, trityl-trityl DEER distance measurements on two model proteins, PpiB (prolyl cis-trans isomerase from E. coli) and GB1 (immunoglobulin G-binding protein), doubly labeled with the trityl spin label, CT02MA. Both proteins gave in-cell distance distributions similar to those observed in vitro, with maxima at 4.5-5 nm, and the data were further compared with in-cell Gd(III)-Gd(III) DEER obtained for PpiB labeled with BrPSPy-DO3A-Gd(III) at the same positions. These results highlight the challenges of designing trityl tags suitable for in-cell distance determination at ambient temperatures on live cells.
More
Translated text
Key words
trityl–trityl distance measurements,proteins,in-cell
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined