Impact Of Bioresorbable Scaffold Design Characteristics On Local Haemodynamic Forces: An Ex Vivo Assessment With Computational Fluid Dynamics Simulations

EUROINTERVENTION(2020)

引用 7|浏览59
暂无评分
摘要
Aims: Bioresorbable scaffold (BRS) regions exposed to flow recirculation, low time-averaged wall shear stress (TAWSS) and high oscillatory shear index (OSI) develop increased neointima tissue. We investigated haemodynamic features in four different BRSs.Methods and results: Fantom (strut height [SH] = 125 mu m), Fantom Encore (SH = 98 mu m), Absorb (SH = 157 mu m) and Magmaris (SH = 150 mu m) BRSs were deployed in phantom tubes and imaged with microCT. Both 2D and 3D geometrical scaffold models were reconstructed. Computational fluid dynamics (CFD) simulation was performed to compute TAWSS and OSI. Thicker struts had larger recirculation zones and lower TAWSS in 2D. Absorb had the largest recirculation zone and the lowest TAWSS (240 mu m and -0.18 Pa), followed by Magmaris (170 mu m and -0.15 Pa), Fantom (140 mu m and -0.14 Pa) and Fantom Encore (100 mu m and -0.13 Pa). Besides strut size, stent design played a dominant role in 3D. The highest percentage area adverse TAWSS (<0.5 Pa) and OSI (>0.2) were found for Fantom (56% and 30%) and Absorb (53% and 33%), followed by Fantom Encore (30% and 25%) and Magmaris (25% and 20%). Magmaris had the smallest areas due to a small footprint and rounded struts.Conclusions: Due to stent design, both Fantom Encore and Magmaris showed smaller TAWSS and OSI than Fantom and Absorb. This study quantifies which scaffold features are most important to reduce longterm restenosis.
更多
查看译文
关键词
bioresorbable scaffolds, in-stent restenosis, preclinical research
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要