Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications.

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A(2020)

引用 31|浏览9
暂无评分
摘要
Bacterial cellulose (BC) membranes display special properties and structures, thus attracting much attention in application in the biomedical areas, for example, as implants for bone or cartilage tissue engineering, as substitutes for skin repairing, and as supports for controlled drug delivery. However, native BC lacks the activity to inhibit bacteria growth on its surface, which limits its applications in biomedical fields. There have been reports on chemical modification of BC membranes to endow them with antimicrobial properties needed for some special biomedical applications. In the present study, aminoalkyl-grafted BC membranes were prepared by alkoxysilane polycondensation using 3-aminopropyltriethoxysilane (APTES). The characterization for morphology and chemical composition showed that BC membranes were successfully grafted with aminoalkylsilane groups through covalent bonding. The surface morphology and roughness of the membranes changed after chemical grafting. Furthermore, after grafting with APTES, the membranes got less hydrophilic than native BC. The aminoalkyl-grafted BC membranes showed strong antibacterial properties against Staphylococcus aureus and Escherichia coli and moreover, they were nontoxic to normal human dermal fibroblasts. These results indicate that aminoalkyl-grafted BC membranes are potential to be used for biomedical applications.
更多
查看译文
关键词
3-aminopropyltriethoxysilane,aminoalkyl-grafted bacterial cellulose,antibacterial activities,cell response,chemical modification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要