Associations between red blood cell variants and malaria among children and adults from three areas of Uganda: a prospective cohort study

Malaria Journal(2020)

引用 9|浏览45
暂无评分
摘要
Background Multiple red blood cell (RBC) variants appear to offer protection against the most severe forms of Plasmodium falciparum malaria. Associations between these variants and uncomplicated malaria are less clear. Methods Data from a longitudinal cohort study conducted in 3 sub-counties in Uganda was used to quantify associations between three red blood cell variants Hb [AA, AS, S (rs334)], alpha thalassaemia 3.7 kb deletion, and glucose-6-phosphate dehydrogenase deficiency A—(G6PD 202A genotype) and malaria incidence, parasite prevalence, parasite density (a measure of anti-parasite immunity) and body temperature adjusted for parasite density (a measure of anti-disease immunity). All analyses were adjusted for age, average household entomological inoculation rate, and study site. Results for all variants were compared to those for wild type genotypes. Results In children, HbAS was associated, compared to wild type, with a lower incidence of malaria (IRR = 0.78, 95% CI 0.66–0.92, p = 0.003), lower parasite density upon infection (PR = 0.66, 95% CI 0.51–0.85, p = 0.001), and lower body temperature for any given parasite density (− 0.13 ℃, 95% CI − 0.21, − 0.05, p = 0.002). In children, HbSS was associated with a lower incidence of malaria (IRR = 0.17, 95% CI 0.04–0.71, p = 0.02) and lower parasite density upon infection (PR = 0.31, 95% CI 0.18–0.54, p < 0.001). α−/αα thalassaemia, was associated with higher parasite prevalence in both children and adults (RR = 1.23, 95% CI 1.06–1.43, p = 0.008 and RR = 1.52, 95% CI 1.04–2.23, p = 0.03, respectively). G6PD deficiency was associated with lower body temperature for any given parasite density only among male hemizygote children (− 0.19 ℃, 95% CI − 0.31, − 0.06, p = 0.003). Conclusion RBC variants were associated with non-severe malaria outcomes. Elucidation of the mechanisms by which they confer protection will improve understanding of genetic protection against malaria.
更多
查看译文
关键词
Red blood cell variants, Erythrocyte, Malaria, Plasmodium, Sickle hemoglobin, Thalassemia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要