Chrome Extension
WeChat Mini Program
Use on ChatGLM

Transparent PAN:TiO2 and PAN-co-PMA:TiO2 Nanofiber Composite Membranes with High Efficiency in Particulate Matter Pollutants Filtration

NANOSCALE RESEARCH LETTERS(2020)

Cited 22|Views18
No score
Abstract
Particulate matter is one of the main pollutants, causing hazy days, and it has been serious concern for public health worldwide, particularly in China recently. Quality of outdoor atmosphere with a pollutant emission of PM2.5 is hard to be controlled; but the quality of indoor air could be achieved by using fibrous membrane-based air-filtering devices. Herein, we introduce nanofiber membranes for both indoor and outdoor air protection by electrospun synthesized polyacrylonitrile:TiO2 and developed polyacrylonitrile-co-polyacrylate:TiO2 composite nanofiber membranes. In this study, we design both polyacrylonitrile:TiO2 and polyacrylonitrile-co-polyacrylate:TiO2 nanofiber membranes with controlling the nanofiber diameter and membrane thickness and enable strong particulate matter adhesion to increase the absorptive performance and by synthesizing the specific microstructure of different layers of nanofiber membranes. Our study shows that the developed polyacrylonitrile-co-polyacrylate:TiO2 nanofiber membrane achieves highly effective (99.95% removal of PM2.5) under extreme hazy air-quality conditions (PM2.5 mass concentration 1 mg/m(3)). Moreover, the experimental simulation of the test in 1 cm(3) air storehouse shows that the polyacrylonitrile-co-polyacrylate:TiO2 nanofiber membrane (1 g/m(2)) has the excellent PM 2.5 removal efficiency of 99.99% in 30 min.
More
Translated text
Key words
Particulate matter (PM) pollution,Aerosol filtration,Electrospinning,Nanofiber membrane
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined