Horizontal-, Vertical-, and Cross-Conjugated Small Molecules: Conjugated Pathway-Performance Correlations along Operation Mechanisms in Ternary Non-Fullerene Organic Solar Cells.

SMALL(2020)

引用 27|浏览25
暂无评分
摘要
A family of the SM-axis series based on benzo[1, 2- b:4, 5- b '] dithiophene and 3-ethylrhodanine (RD) units with structurally different pi-conjugation systems are synthesized as a means to understand the structure-property relationship of conjugated pathways in ternary non-fullerene organic solar cells (NF-OSCs) as a third component. The optical and electrochemical properties of the SM-axis are highly sensitive both to the functionalized direction and to the number of RD groups. Enhanced power conversion efficiencies (PCEs) of over 11% in ternary devices are obtained by incorporating optimal SM-X and SM-Y contents from PBDB-T:ITIC binary NF-OSCs, while a slightly lower PCE is observed with the addition of SM-XY. The results of in-depth studies using various characterization techniques demonstrate that working mechanisms of SM-axis-based ternary NF-OSCs are distinctly different from one another: an energy-transfer mechanism with an alloy-like model for SM-X, a charge transfer with the same model for SM-Y, and an energy transfer without such a structure for SM-XY. As extension of the scope, a SM-X-based ternary NF-OSC in the PM6:IT4F system also shows a greatly enhanced PCE of over 13%. The findings provide insights into the effects of conjugated pathways of organic semiconductors on mechanisms of ternary NF-OSCs, advancing the understanding for synthetic chemists, materials engineers, and device physicists.
更多
查看译文
关键词
conjugated directions,optoelectronic properties,structural compatibility,ternary organic solar cells,working mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要