Lactobacillus johnsonii L531 ameliorates enteritis via elimination of damaged mitochondria and suppression of SQSTM1-dependent mitophagy in a Salmonella infantis model of piglet diarrhea

Bing Xia, Jiao Yu, Ting He, Xiao Liu, Jinhui Su, Meijun Wang, Jiufeng Wang, Yaohong Zhu

FASEB JOURNAL(2020)

引用 30|浏览9
暂无评分
摘要
Newly weaned piglets challenged with Salmonella infantis were particularly susceptible, whereas oral preadministration of Lactobacillus johnsonii L531 alleviated enteritis and promoted intestinal secretory IgA production. Salmonella infantis-induced activation of NLRC4 and NLRP3 inflammasomes and (nuclear factor kappa B) NF-kappa B signaling in the small intestine was also inhibited by L. johnsonii L531 pretreatment, thus limiting inflammation. An IPEC-J2 cell model of S. infantis infection yielded similar results. Salmonella infantis infection also resulted in mitochondrial damage and impaired mitophagy in the ileum and IPEC-J2 cells, as demonstrated by immunofluorescence colocalization of mitochondria with microtubule-binding protein light chain 3 (LC3) and high expression of autophagy-related proteins PTEN-induced putative kinase 1 (PINK1), sequestosome 1 (SQSTM1/p62), optineurin (OPTN), and LC3 by Western blotting analysis. However, L. johnsonii L531 pretreatment reduced both the extent of mitochondrial damage and autophagy-related protein expression. Our findings suggest that the amelioration of S. infantis-associated enteritis by L. johnsonii L531 is associated with regulation of NLRC4 and NLRP3 inflammasomes and NF-kappa B signaling pathway activation and suppression of mitochondrial damage. Amelioration of impaired mitophagy by L. johnsonii L531 could involve eliminating damaged mitochondria and regulating S. infantis-induced activation of the NF-kappa B-SQSTM1mitophagy signaling pathway in host cells to prevent the further mitochondrial damage and S. infantis dissemination.
更多
查看译文
关键词
autophagy,inflammasome,IPEC-J2,pig,probiotic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要