Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway.

NATURE MATERIALS(2020)

引用 62|浏览21
暂无评分
摘要
A mechanism of cell response to localized tension shows that syndecan-4 synergizes with EGFR to elicit a mechanosignalling cascade that leads to adaptive cell stiffening through PI3K/kindlin-2 mediated integrin activation. Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and beta 1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/beta 1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/alpha-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.
更多
查看译文
关键词
Biophysical methods,Computational biophysics,Focal adhesion,Mechanotransduction,Molecular conformation,Materials Science,general,Optical and Electronic Materials,Biomaterials,Nanotechnology,Condensed Matter Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要