Performance and population structure of two carbon sources granular enhanced biological phosphorus removal systems at low temperature.

Bioresource technology(2019)

引用 35|浏览23
暂无评分
摘要
This study explored the effect of two carbon sources on performance and population structure of granular enhanced biological phosphorus removal systems at long-term low temperature by using two sequencing batch reactors, with acetate (SBR-1) and propionate (SBR-2) as carbon sources respectively. Results showed that highly efficient EBPR were successfully achieved, and the average PO43--P and COD removal efficiency of SBR-1 and SBR-2 were 94.2%, 87.1% and 98.2%, 87.0%, respectively. Moreover, the acetate system preferred to utilize intracellular Mg/K-polyP to produce ATP for VFA uptake rather than glycogen. High-throughput sequencing analysis revealed that the abundance of Rhodocyclaceae were 31.7% (SBR-1) and 71.7% (SBR-2), and genus Dechloromonas was enriched to 60.5% with propionate, evidently higher than acetate (1.2%). Furthermore, in addition to oxygen, Dechloromonas could use nitrate as electron acceptors for phosphate uptake. The study further provides support to simultaneous nitrogen and phosphorus removal at low temperature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要