Ce6/Mn2+-Chelated Polydopamine@Black-Tio2 Nanoprobes For Enhanced Synergistic Phototherapy And Magnetic Resonance Imaging In 4t1 Breast Cancer

NANOSCALE(2020)

Cited 37|Views24
No score
Abstract
Black titanium dioxide (TiO2) nanoparticles have attracted great attention due to their application in photothermal therapy (PTT). However, single-mode phototherapy has the risk of recurrence, and the high-dose laser usually imposed to improve the PTT performance can bring a potential threat to security. Here, polydopamine (PDA)-coated black TiO2 (b-P25@PDA) nanoparticles with a core-shell structure were synthesized for enhanced PTT; then, synergistic phototherapy nanoprobes (b-P25@PDA-Ce6 (Mn)) were constructed by coupling chlorin e6 (Ce6) and chelating Mn2+ for simultaneous photodynamic therapy (PDT)/PTT and magnetic resonance (MR) imaging, in which a low-dose laser was used and imaging-guided phototherapy with high efficiency and high safety was achieved. The prepared nanoprobes showed high photothermal conversion efficiency (32.12%), high reactive oxygen generation and excellent MR imaging. In the 4T1 tumor-bearing nude mouse model, the tumors completely disappeared under the combination of PDT/PTT with a low-dose laser but were only partially inhibited by single PDT and single PTT. The current work developed a multifunctional black TiO2-based nanoprobe for enhanced synergistic PDT/PTT and MR imaging, which will be important for the safe and efficient visualized theranostics of cancers.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined