Chrome Extension
WeChat Mini Program
Use on ChatGLM

Suppression of miR-203-3p inhibits lipopolysaccharide induced human intervertebral disc inflammation and degeneration through upregulating estrogen receptor α

GENE THERAPY(2020)

Cited 14|Views10
No score
Abstract
Accumulating evidence demonstrates that estrogen receptor α (ERα) and microRNAs (miRNAs) play crucial roles in intervertebral disc degeneration (IDD). However, the specific miRNA that related with ERα during IDD development remains unknown. Therefore, we aimed to explore the role of ERα-related miRNA in the IDD model. Nucleus pulposus (NP) cells were isolated from IDD patients. ERα-related miRNAs were selected and verified in NP tissues from IDD patients using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Also, the related cytokine mRNA levels were detected by qRT-PCR. Protein levels were determined by Western blot. The concentrations of inflammatory cytokines in culture supernatants were detected by enzyme-linked immunosorbent assay. MiR-203-3p was found to be upregulated in NP tissues of high-grade IDD patients compared with low-grade IDD patients, and negatively associated with ERα expression. MiR-203-3p directly targeted ERα in NP cells of IDD patients. After lipopolysaccharides (LPS) stimulation, miR-203-3p expression increased, while ERα expression decreased in NP cells. MiR-203-3p inhibition suppressed the effect of LPS on ERα expression and IDD related genes, while ERα downregulation rescued the effect of LPS. In conclusion, suppression the expression of miR-203-3p could inhibit LPS-induced human intervertebral disc inflammation and degeneration through upregulating ERα.
More
Translated text
Key words
Biotechnology,Diseases,Biomedicine,general,Human Genetics,Cell Biology,Nanotechnology,Gene Therapy,Gene Expression
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined