A molecular interaction field describing nonconventional intermolecular interactions and its application to protein-ligand interaction prediction.

Journal of Molecular Graphics and Modelling(2020)

引用 11|浏览11
暂无评分
摘要
Nonconventional noncovalent interactions such as CH/O, CH/π, and halogen bonds play important roles in molecular recognition in biological systems and have been increasingly exploited in structure-based drug design. In silico approaches that consider these interactions would be an effective strategy for drug discovery. The computation of the molecular interaction field (MIF), which is a three-dimensional (3D) potential map describing the interactions formed around a target compound, would assist the design of molecules that bind to the target biomolecule via nonconventional interactions. In this study, we developed a novel MIF calculation method that describes nonconventional interactions. This method evaluates the MIF as the interaction energy between the target ligand molecule and probe molecule. To describe the nonconventional interactions, our method employs quantum chemical calculations with four types of probe molecules. The calculated MIFs for casein kinase 2 (CK2) inhibitors correctly identify the halogen bond, CH/π, and CH/O interactions formed in the CK2/inhibitor complexes. Additionally, we have developed a method for calculating the protein–ligand interaction energy (Eint) based on the MIF and a coarse-grained protein model. The calculated interaction energies for CK2 inhibitors correlate with the experimental log(Ki) values. Thus, MIF and Eint obtained by our method show promise as descriptors for protein-ligand interaction prediction by considering nonconventional noncovalent interactions.
更多
查看译文
关键词
Molecular interaction field,Nonconventional hydrogen bonds,Halogen bonds,Protein–ligand binding,Structure-based drug design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要