Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment

Soil Biology and Biochemistry(2020)

引用 56|浏览41
暂无评分
摘要
There is a current lack of mechanistic understanding on the relationships between a soil microbial community, crop production, and nutrient fertilization. Here, we combined ecological network theory with ecological resistance index to evaluate the responses of microbial community to additions of multiple inorganic and organic fertilizers, and their associations with wheat production in a 35-year field experiment. We found that microbial phylotypes were grouped into four major ecological clusters, which contained a certain proportions of fast-growers, copiotrophic groups, and potential plant pathogens. The application of combined inorganic fertilizers and cow manure led to the most resistant (less responsive) microbial community, which was associated with the highest levels of plant production, nutrient availability, and the lowest relative abundance of potential fungal plant pathogens after 35 years of nutrient fertilization. In contrast, microbial community was highly responsive (low resistance) to inorganic fertilization alone or plus wheat straw, which was associated with lower crop production, nutrient availability, and higher abundance of potential fungal plant pathogens. Our work demonstrates that the response of microbial community to long-term nutrient fertilizations largely regulates plant production in agricultural ecosystems, and suggests that manipulating these microbial phylotypes may offer a sustainable solution to the maintenance of field productivity under long-term nutrient fertilization scenarios.
更多
查看译文
关键词
Microbial community resistance,Ecological networks,Long-term nutrient fertilization,Crop production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要