SNP- and Haplotype-Based GWAS of Flowering-Related Traits in Maize with Network-Assisted Gene Prioritization

AGRONOMY-BASEL(2019)

Cited 14|Views1
No score
Abstract
Maize (Zea mays L.) is one of the most crucial crops for global food security worldwide. For this reason, many efforts have been undertaken to address the efficient utilization of germplasm collections. In this study, 322 inbred lines were used to link genotypic variations (53,403 haplotype blocks (HBs) and 290,973 single nucleotide polymorphisms (SNPs)) to corresponding differences in flowering-related traits in two locations in Southern Brazil. Additionally, network-assisted gene prioritization (NAGP) was applied in order to better understand the genetic basis of flowering-related traits in tropical maize. According to the results, the linkage disequilibrium (LD) decayed rapidly within 3 kb, with a cut-off value of r(2) = 0.11. Total values of 45 and 44 marker-trait associations (SNPs and HBs, respectively) were identified. Another important finding was the identification of HBs, explaining more than 10% of the total variation. NAGP identified 44, 22, and 34 genes that are related to female/male flowering time and anthesis-silking interval, respectively. The co-functional network approach identified four genes directly related to female flowering time (p < 0.0001): GRMZM2G013398, GRMZM2G021614, GRMZM2G152689, and GRMZM2G117057. NAGP provided new insights into the genetic architecture and mechanisms underlying flowering-related traits in tropical maize.
More
Translated text
Key words
gene prioritization,linkage disequilibrium,marker-trait association,tropical maize
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined