DNA Cytosine-Demethylating Agent 5-Aza-2'-Deoxycytidine Targets Leukemia Cells through Reducing DNA N6-Methyladenine

BLOOD(2019)

引用 0|浏览46
暂无评分
摘要
Introduction: It is known that overexpression of DNA methyltransferases (e.g., DNMT1) is frequent and changes of DNA cytosine methylation (5mC) are a constant feature of cancers. DNA methylation inhibitors, such as 5-aza-2'-deoxycytidine (Dec), have been in clinics for patients with leukemia. It is classically believed that promoter hypomethylation coupled by reexpression of epigenetically-suppressed tumor suppressors is a core mechanism behind Dec-impaired leukemia cell growth. However, the fact that global DNA methylation profiling barely predicts Dec-response suggests a demethylation-independent mechanism of Dec-induced cell death. N6-methyladenine (m6A) has been identified recently as an abundant DNA modification in eukaryotes (Wu, Nature 2016;532:329). Importantly, m6A is extensively present in the human genome, and m6A abundance is associated with tumorigenesis (Xie, Cell 2018;71:306). Furthermore, the DNA m6A is dynamically modulated by the methyltransferases (i.e., METTL3, N6AMT1) and demethylases (i.e., ALKBH1), and changes in m6A predict gene expression (Wu, Nature 2016;532:329). Given a potential crosstalk between m6A and distinct epigenetic mechanisms (Yao, Nat. Commun 2017;8:1122), we hypothesized that the anticancer actions of Dec may partially result from changes in DNA m6A in leukemia cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要